Abstract

One of the powerful methodologies of ergogenic nature is the use of vibration loads in the mode of "whole body vibration", which in terms of frequency of oscillations mostly coincides with the frequency of oscillations of the microstructures of the body itself. The purpose of the study was to evaluate the effectiveness of the use of non-pharmacological agents with antioxidant nature of action in vibration loads in athletes. Materials and methods. To assess the effectiveness of vibration loads as a non-pharmacological ergogenic agent, we have chosen vibration loads as one of the most characteristic mechanical effects on the human body. The study of the effectiveness and impact mechanisms of vibration loads on the body of athletes using domestic spiral-vortex simulator involved 24 representatives of cyclic sports. They are qualified rowers in kayaks and canoes. These athletes were divided into equal groups (12 people) by the number of group members – control and main. In the dynamics of research, not only changes under the influence of additional vibration loads of indicators of special physical performance were evaluated, but also numerous homeostatic parameters that reflect the severity of oxidative stress, structural and functional state of cell membranes, the degree of endogenous toxicity, intensity of humoral immunity, and also systemic factors that affect the formation of physical performance – the activity of the factor induced by hypoxia and the main angiogenic factor. Vibration load after the main standard training session was created using a spiral-vortex simulator «PLH-9051» for 30 minutes. The examination of the participants was conducted before starting and at the end of the stage of direct preparation for the competition. Results and discussion. The results of our study have proven that the vibration of the whole body in this mode does not lead to negative changes in the basic standard laboratory parameters of the body. At the same time, it was found that the indicators in the 12-minute test (endurance characteristics) and in the one-minute test (speed characteristics) significantly improved. As for the metabolic changes that are the basis for such rearrangements of the parameters of special physical performance, it is established that there is no additional activation of oxidative stress during vibration training. Vibration loads, firstly, have a positive effect at the subcellular level – the activity of lipid peroxidation reduces and antioxidant protection improves. At the same time, positive changes occur in the activation links of angiogenetic characteristics, which are an indirect reflection of the increase in the number of microvessels and the improvement of tissue blood circulation with the increase of oxygen transfer and plastic and energy substrates. Conclusion. Thus, according to the obtained data, vibration loads in the mode of vibration load of the whole body lasting 30 minutes after standard training load are similar to hypoxic training conditions, but without the occurrence of oxidative stress, and can be used for the same purpose – to improve adaptation mechanisms and increase physical performance at the special preparatory stage of athletes specializing in cyclic sports, and in a more general interpretation – in sports with a predominantly aerobic mechanism of energy supply

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.