Abstract
The numerical simulation of unsteady flows of cold plasma is considered in this article. A low-temperature non-equilibrium ideal plasma is formed when the plasma actuator interacts with the air. The mathematical model has been developed to describe the behavior of low-temperature plasma. It is based on non-stationary equations describing the dynamics of charged particles and plasma electrodynamics equations. The 14 types of particles: metastable and excited nitrogen and oxygen atoms, positive and negative ions, electrons and atomic oxygen are considered. Volumetric and surface chemical reactions describing processes in a barrier discharge that occur above the dielectric surface are considered. For non-stationary equations of plasma dynamics, an implicit numerical algorithm with pseudo-time iteration has been developed, which is based on a finite-volume approach. The equation for the electrostatic potential with sources was solved using the generalized minimal residual method with incomplete LU preconditioning. In non-stationary equations for the density of plasma particles, the drift derivatives were approximated using the TVD scheme with the MinMod limiter function. The derivatives in the equation for the electric potential were calculated using finite-volume relations taking into account the upwind approximation of the concentration of charged plasma particles. The numerical results of the generation, propagation and destruction of a streamer during a dielectric barrier discharge are obtained. The unsteady plasma characteristics in the region above the dielectric surface are analyzed, including the distribution of the particles density, electric potential and the Lorentz force components. The results of numerical simulation of unsteady flows of low-temperature plasma are in good agreement with the available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.