Abstract

The paper considers a quadratic birth-death Markov process. The points on a line segment located within a quarter-plane represent the states of the random process. We designate the set of vectors that have integer non-negative coordinates as our quarter plane. The process is defined by infinitesimal characteristics, or transition probability densities. These characteristics are determined by a quadratic function of the coordinates at the segment points with integer coordinates. The boundary points of the segment are absorbing; at these points, the random process stops. We investigated a critical case when process jumps are equally probable at the moment of exiting a point. We derived expressions describing transition probabilities of the Markov process as a spectral series. We used a two-dimensional exponential generating function of transition probabilities and a two-dimensional generating function of transition probabilities. The first and second systems of ordinary differential Kolmogorov equations for Markov process transition probabilities are reduced to second-order mixed type partial differential equations for a double generating function. We solve the resulting system of linear equations using separation of variables. The spectrum obtained is discrete. The eigen-functions are expressed in terms of hypergeometric functions. The particular solution constructed is a Fourier series, whose coefficients are derived by means of expo-nential expansion. We employed sums of functional series known in the theory of special functions to construct the exponential expansion required

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call