Abstract

In the article, using the example of a real explosive object, the methodology for determining the maximum dynamic load that forms during an emergency explosion is considered. The article shows that when determining the load from an emergency explosion, it should be considered that a deflagration explosion of a gas-air mixture occurs. It should be accepted that only a certain part of the combustible substance is involved in the explosion, which is determined as a result of solving the diffusion problem. Detonation explosion should be excluded from sources of explosive danger. A detonation explosion at enterprises using hydrocarbons can occur with a powerful ignition source, such as lightning, a voltaic arc, or a TNT stick. These sources of mixture initiation must be excluded by engineering or organizational measures. It is shown that during a deflagration explosion, which is characterized by a smooth increase in explosive pressure, an explosive wave flows around buildings. Therefore, a significant increase in explosive loads on the facades of buildings, which is associated with the effect of reflection of a compression wave, will not occur. In addition, a smooth increase in explosive pressure leads to a significant decrease in the dynamic coefficient. These features of the development of an explosive accident must be taken into account when assessing the potential danger of an emergency explosion. The article describes a design scheme that allows calculating the dynamic load that is formed during a deflagration emergency explosion. The calculation method is based on linearized equations of motion of a continuous medium. The possibility of using linearized equations of motion is associated with the smallness of the apparent flame velocity realized during deflagration explosions of hydrocarbons. An additional advantage of using the acoustic approximation is the ability to calculate vibration or acoustic loads. A calculation scheme is presented that allows replacing the dynamic load with an equivalent static one, which is necessary when designing in an explosion-proof version of buildings located on the territory of explosive objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call