Abstract

Reliability, survivability, as well as the optimal operating mode of operation of the supercomputer will depend on the architecture and efficiency of the cooling system of the hot components of the supercomputer. That is why the number of problems, of great theoretical and practical interest, is the problem of studying the temperature fields arising in elements of arbitrary configuration, cooling a supercomputer. To solve this class of heat conduction problems, the method of finite integral transformations turned out to be the most convenient. This article is the first to construct a new finite integral transformation for the Laplace equation in an arbitrary domain bounded by several closed piecewise-smooth contours. An inverse transformation formula is given. Finding the core of the constructed new finite integral transformation by the finite element method in the Galerkin form for simplex first-order elements reduces to solving a system of algebraic equations. To test the operability of the new integral transformation, calculations were carried out of solutions of the boundary value problem for the Laplace equation obtained using the developed new integral transformation and the well-known analytical solution. The results of comparison the calculations of the solution of the Laplace equation are presented. In the case of a square with a side length equal to one and on one side of the square, the temperature is unity, and on the other, the temperature is zero, with a well-known analytical solution and a solution obtained using the new integral transformation. These results were obtained for 228 simplex first-order elements and 135 nodes. The maximum deviation modulo of these solutions is 0,096, the mathematical expectation of deviations is 0,009, and the variance of the type is 0,001. The developed integral transformation makes it possible to obtain a solution to complex boundary value problems of mathematical physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.