Abstract

초고층 건축물은 좁은 평면위에 수직적으로 집합된 구조물이다. 이러한 건축물에 화재 시 수직으로의 화재확산은 엄청난 인적 물적 자원의 피해를 초래하게 된다. 이러한 화재확산을 막기 위한 방화구획의 설정은 아주 중요하며 방화구획에 틈이 발생하는 경우 화재확산의 통로가 되게 된다. 선형조인트 충전시스템은 이러한 화재확산을 막는 중요한 요소가 된다. 지금껏 선형조인트 충전시스템은 내화성능에만 초점이 맞추어져 있었으며, 건축물의 움직임 대한 내구성을 전혀 고려하지 않았다. 본 연구는 초고층 건축물의 움직임을 고려한 내구성 시험방법과 기준을 ISO 국제표준에서 도입하여 이를 적용한 시험 장치를 개발하였고, 내구성 시험과 내화시험을 실시하였다. 시험체는 암면을 선형의 틈에 채우고 상부에 fire-stop spray를 적용하는 가장 일반적인 형태의 선형조인트 충전시스템(시험체 1)과 시험체 1에 단열재를 포함한 시험체(시험체 2)의 시험을 실시한 결과 시험체 1은 180분의 내화성능을 발휘하였으나, 시험체 2는 153분의 내화성능을 나타내었다. 시험체 2는 차열성능에는 문제가 없었으나 단열재 부분에 불꽃이 발생하여 차염 성능을 상실한 것으로 밀도가 낮은 단열재를 통해 화재확산이 이루어져 추후 연구에서 단열재를 포함한 외벽 커튼월 시스템의 선형조인트 충전시스템에 대한 내화성능의 연구가 필요할 것으로 사료된다. It is well known that ultra high-rise buildings are constructed to accommodate many facilities in a limited area. However, in this type of buildings, the spread of fire to the upper floor can cause immense financial loss and casualties, compared to normal sized buildings. Hence, to prevent the loss due to the spread of fire, it is recommended that each room or space of building structures should be separated by fire-proof barriers or fire-proof walls. The linear joint system is a key area to determine the spread of fire, so that the gap in the joint must be fully protected from fire. In Korea, it is true that the linear joint applied to practice does not take account the effect of natural thermal movement of building structures that can deteriorate the fire-proof performance of the system. Thus, in this study, a ISO movement test was adopted to reflect the long term condition of the linear joint system in a real world. A new apparatus was developed and used in the tests, in order to follow the ISO code. In this study, two specimens were prepared for a comparison purpose: one is conventional specimens (specimen 1) and the other is the specimen with additional insulation (specimen 2). Mineral wool and fire-stopping spray were the conventional materials, applied to specimen 1, and glass wool was an additional material applied to specimen 2, together with the mineral wool and fire-stopping spray. Test results showed that specimen 1 resisted fire-induced damage for 180 min, whereas specimen 2 did for 153 min. As expected, the fire-proof performance of specimen 2 was better than specimen 1. However, the results obtained from the specimen 2 still did not satisfy the required level. This was due to the ignition of glass wool. Hence, it is required to further explore to find the other insulating materials that can increase the fire resistance time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.