Abstract

We proposed and verified the methods to maintain data qualities as well as to reduce data volume for the Geostationary Ocean Color Imager (GOCI), the world’s first ocean color sensor operated in geostationary orbit. For the GOCI level-2 data, 92.9% of data volume could be saved by only the data compression. For the GOCI level-1 data, however, just 20.7% of data volume could be saved by the data compression therefore another approach was required. First, we found the optimized number of bits per a pixel for the GOCI level-1 data from an idea that the quantization bit for the GOCI (i.e. 12 bit) was less than the number of bits per a pixel for the GOCI level-1 data (i.e. 32 bit). Experiments were conducted using the R2 and the Modulation Transfer Function (MTF). It was quantitatively revealed that the data qualities were maintained although the number of bits per a pixel was reduced to 14. Also, we performed network simulations using the Network Simulator 2 (Ns2). The result showed that 57.7% of the end-toend delay for a GOCI level-1 data was saved when the number of bits per a pixel was reduced to 14 and 92.5% of the end-to-end delay for a GOCI level-2 data was saved when 92.9% of the data size was reduced due to the compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.