Abstract

In this paper, an optimal FIR (Finite-Impulse-Response) filter is proposed for discrete time-varying state-space models. The proposed filter estimates the current state using measured output samples on the recent time horizon so that the variance of the estimation error is minimized. It is designed to be linear, unbiased, with an FIR structure, and is independent of any state information. Due to its FIR structure, the proposed filter is believed to be robust for modeling uncertainty or numerical errors than other IIR filters, such as the Kalman filter. For a general system with system and measurement noise, the proposed filter is derived without any artificial assumptions such as the nonsingular assumption of the system matrix A and any infinite covariance of the initial state. A numerical example show that the proposed FIR filter has better performance than the Kalman filter based on the IIR (Infinite- Impulse-Response) structure when modeling uncertainties exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.