Abstract

A numerical model and the results of calculation of the interfacial mass transfer in a two-phase flow formed by spraying a liquid in a gas with a nozzle are described. The basis of the proposed mathematical model is the differential equations of the nonstationary flow of a compressible medium supplemented by the equation of mass transfer from a gas to droplets. Going over to the difference analogues of the equations of continuity and phase motion, we used the well-known explicit Lax-Vendroff scheme. Herein, the axial profiles of the velocities of droplets and gas, concentrations of gas impurity in a free spray flow, as well as radial profiles of impurity concentrations in a two-phase flow through a cylindrical apparatus are calculated and presented accounting the early drag crisis of droplets, the mass-transfer crisis and the turbulent friction characteristics in gas discovered in previous experiments. Calculations show dependences of the volumetric gas flow, concentration of the gas admixture at the apparatus output, and the amount of impurity absorbed by a liquid on the height and cross-section area of the apparatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call