Abstract

The current unfavorable environmental and hydro-technical situation in some regions of the country has cre-ated a number of serious problems. The government of the Russian Federation has created projects and programs where dredging is an integral part. There are carried out dredging works, among other things, by multi-bucket dredgers, where a scoop chain is the main working body. The performance and reliability of the chain depends on the quality of materials that experience high dynamic loads, and the consequences of the abrasive environment, which leads to accelerated wear of the swivel. There are given the results of the study of wear characteristics, the range of compatibility of steels and alloys of the hinged connection of the dredger bucket chain and the technology for the restoration of these elements, with an increase in the resource of the chain connection unit. Experimental studies simulating the wear of the assembly on small-sized samples determined the wear re-sistance of the materials of the pair. The method of comparative analysis with reference pairs was used. The experimental material consisted of 13 pairs, including 2 pairs of standards made of steel 110Mn13, 38CrNi3M (sleeve-finger) and steel 110Mn13 (sleeve and finger), where the remaining pairs were made of materials: steels C35K, C45K, 110Mn13, 38CrNi3Mo, wear-resistant surfacing with E – 190Cr5Si7 – LEZ – T – 590 – NG electrodes, surfacing with wire SV08A, electrodes E50A – UONI 13/55 (E513B20H), E46 - ANO-4 (E433R24) after a complex of heat treatments, chemical-thermal treatments, surface plastic deformation, where the samples were subjected to a load of 6615 N (675 kgf) in water-abrasive medium, were tested on the friction machine. Fundamental dependences are revealed and graphs of the influence of the hardness of the samples and the carbon content of the friction surface on the wear-resistant characteristics of various structural classes are plotted. Promising pairs for full-scale tests were determined: 1. steel 110Mn13 (sleeve) - surfacing SV08A with chemical-thermal treatment (finger); 2. steel 38CrNi3Mo (sleeve) - steel C35K with chemical-thermal treatment (finger); 3. steel C35K with chemical-thermal treatment (sleeve) - cladding SV08A with chemical-thermal treatment (finger).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call