Abstract

Nowadays a creation of automated control systems for unmanned space missions in near-Earth space, for a spacecraft or a group of them is relevant. One of the central problems in the mission control is ballistic and navigation support, including setting targets, developing methods and algorithms to solve them, a complex of computational procedures, which are used later in the spacecraft flight control. One of the tasks of ballistic and navigation support is to determine the parameters of spacecraft motion in space (current and projected). Navigation gives you the ability to define and correct a space mission, to provide guidance, convergence, disorbit, etc. The analysis of the operation processes and the problems of creating automated control systems for mission control is impossible without a mathematical model or an aggregated set of components’ models, which reflect the properties of the modeling object. One of the main problems of spaceflights is a technical exploration of space, designed to strengthen the defense power of the Russian Federation and national security. Implementation of the pressing problems in this area for the Russian Federation is possible to base on the creation of spacecraft groups using highly elliptical orbits. In this regard, the article discusses the urgent task of building the satellite systems of continuous coverage of the Earth in highly elliptical orbits. This problem is reduced to finding the extremum of a function of a finite number of parameters, the function must have the meaning of a geocentric angular distance. The number of parameters is large, the criterion function is composite. To facilitate the analysis and simplify the calculations, the authors suggest the variants of problem dimension reduction, as well as the parameters of the operating effect of spaceflights automated control systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.