Abstract

To substitute indium tin oxide (ITO), many substituents have been studied such as metal nanowires, carbon based materials, 2D materials, and conducting polymers. These materials are not good enough to apply to an electrode because theses exhibit relatively high resistance. So metal grids are required as an additionalelectrode to improve the conductivities of substituents. The metal grids were printed by electrohydrodynamic printing system using Ag nanoparticle based ink. The Ag grids showed high uniformity and the line width was about 10 µm. The Ag nanoparticles are surrounded by dispersants such as unimolecular and polymer to prevent aggregation between Ag nanoparticles. The dispersants lead to low conductivity of Ag grids. Thus, the sintering process of Ag nanoparticles is strongly recommended to remove dispersants and connect each nanoparticles. For sintering process, the interface and microstructure of the Ag grid were controlled in 1.0 torr Ar atmosphere at aound 400 o C of temperature. From the sintering process, the uniformity of the Ag grid was improved and the defects on the Ag grids were reduced. As a result, the resistivity of Ag grid was greatly reduced up to 5.03(±0.10) × 10 -6 Ω·cm. The metal grids embedded substrates containing low pressure Ar sintered Ag grids showed 90.4% of transmittance in visible range with 0.43 Ω/□ of sheet resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.