Abstract
본 연구에서는 퍼지관계 및 진화론적 최적 다층 퍼셉트론에 기초한 퍼지다항식 뉴럴네트워크(FPNN)의 새로운 구조를 소개하고, 포괄적인 설계방법론을 토의하며, 그리고 일련의 수치적인 실험이 수행된다. 진화론적 최적 FPNN(EFPNN)의 구축을 위해 컴퓨터지능(CI)의 기반 기술을 이용한다. EFPNN의 구조는 규칙베이스 퍼지뉴럴네트워크와 다항식 뉴럴네트워크의 결합에 의한 유전자 최적 구동 하이브리드 시스템의 시너지 이용으로 얻어진다. 퍼지뉴럴네트워크는 EFPNN의 전체규칙 구조의 전반부에 기여하고, EFPNN의 후반부는 다항식 뉴럴네트워크를 사용하여 설계된다. EFPNN의 후반부를 위한 유전론적 최적 다항식 뉴럴네트워크의 개발은 두 최적화 기법에 의해 수행된다. 즉 구조적 최적화는 유전자알고리즘에 의해 수행되고, 파라미터 최적화는 최소자승법 기반의 학습을 통해 행하여진다. EFPNN의 성능 평가를 위해, 모델은 몇 가지 수치 예제를 이용한다. 비교에 의한 해석은 제안된 EFPNN이 이전에 제시된 다른 지능형 모델보다 높은 정확도 뿐만 아니라 좀 더 우수한 예측능력을 가지는 모델임을 보여준다. In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.