Abstract
Game agents which are behavioral agent for game playing are a crucial component of game satisfaction. However it takes a lot of time and effort to create game agents for various game levels, environments, and players. In addition, when the game environment changes such as adding contents or updating characters, new game agents need to be developed and the development difficulty gradually increases. And it is important to have a game agent that can be customized for different levels of players. This is because a game agent that can play games of various levels is more useful and can increase the satisfaction of more players than a high-level game agent. In this paper, we propose a method for learning and controlling the level of play of game agents that can be rapidly developed and fine-tuned for various game environments and changes. At this time, reinforcement learning applies a policy-based distributed reinforcement learning method IMPALA for flexible processing and fast learning of various behavioral structures. Once reinforcement learning is complete, we choose actions by sampling based on Softmax-Temperature method. From this result, we show that the game agent's play level decreases as the Temperature value increases. This shows that it is possible to easily control the play level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.