Abstract
The global production of propylene oxide is more than 8 million tons/year and is increasing by more than 5% annually. Almost all domestic propylene oxide (72 thousand tons/year) is produced at PJSC Nizhnekamskneftekhim (Russia) according to one of the variants of the Halcon process – epoxidation of propylene with ethylbenzene hydroperoxide (HPEB) in the presence of a molybdenum catalyst. One of the most important tasks arising in improving the process for the joint production of styrene and propylene oxide at PJSC Nizhnekamskneftekhim (Russia) is the search and development of new catalysts and catalytic systems, one of the stages of this process – the epoxidation of propylene with HPEB. The complex molybdenum catalyst used in the production of propylene oxide, having high activity and selectivity, has several disadvantages, namely: low dissolved molybdenum content, high consumption of ethylbenzene hydroperoxide for its production, and instability during storage. Thus, the problem of obtaining a catalyst with a higher content of dissolved molybdenum and increasing the stability of the catalytic complex, i.e. development of new catalytic systems with the best technological and technical and economic indicators. An analysis of the scientific and technical literature and patent publications showed that in the synthesis of a complex molybdenum catalyst, various molybdenum compounds of both organic and inorganic nature can be used. During the study, molybdenum-containing solutions based on ammonium paramolybdate and monoethylene glycol were tested, distillation distillation products prepared by distilling off excess monoethylene glycol by strengthening under vacuum. Molybdenyl glycolate was isolated by salting out with ethanol from a distillation bottoms product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.