Abstract

This paper addresses the problem of creating mathematical methods to optimize time and computing resources when processing Big Data. These methods are based on the proposed data organizational structure called “m-tuples based on ordered sets of arbitrary cardinality”. We formulated certain properties of the given data organizational structure as a consequence of the logical rules applied for the formation of m-tuples. A set of functional dependencies was also derived between m-tuples based on their location in the structure. A graphical interpretation was presented to illustrate the change of dynamics in fractions of operand combinations for which one tuple is a subset of the other. It takes into account the variation in the lengths of operand tuples. We also obtained logical conclusions about the influence of the properties studied and mathematical methods of working with the given structure to minimize the computing resources involved.

Highlights

  • This paper addresses the problem of creating mathematical methods to optimize time and computing resources when processing Big Data

  • Формулу 2) в залежності від місця розташування операндів у структурі [10−12]

Read more

Summary

Introduction

МАТЕМАТИЧНІ МЕТОДИ СКОРОЧЕННЯ ПРОСТОРУ АНАЛІЗОВАНИХ СТАНІВ ПРИ ОБРОБЦІ «ВЕЛИКИХ ДАНИХ» НТУ «Дніпровська політехніка», Україна Ключові слова: ВЕЛИКІ ДАНІ, СТРУКТУРА ОРГАНІЗАЦІЇ ДАНИХ, ВПОРЯДКОВАНА МНОЖИНА ДОВІЛЬНОЇ ПОТУЖНОСТІ, M-АРНІ КОРТЕЖІ, МЕТОД СКОРОЧЕННЯ ПРОСТОРУ АНАЛІЗОВАНИХ СТАНІВ. Однією з найважливіших проблем застосування методів роботи з великими даними є їх обчислювальна осяжність [1 3, 6].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.