Abstract

A network model of operational actions of emergency rescue teams in the elimination of the consequences of emergency situations in a graphical and mathematical representation has been developed. The use of the model makes it possible to plan or analyze the process of organizing operational actions of civil protection units, to manage the course of its implementation. This is relevant for the planned period of emergency response. The task of forming performers of individual works in the elimination of the consequences of emergency situations has been formulated. The essence of the task is reduced to the ability to choose from a variety of civil protection units the necessary performers and assign them to work. Moreover, upon the appointment, the entire complex of works was completed within a given deadline and with minimal costs. Formalization of the corresponding problem made it possible to bring it to the classical assignment problem, which is solved by Kuhn's method. The use of a dynamic pro-gramming algorithm made it possible to obtain an initial approximation of the solution of the problem, at which the cost of performing a complex of emergency rescue operations will be minimal. To optimize the network graph of operational actions by reducing the length of the critical path, a dynamic programming method is proposed. The research results are synthesized into an algorithm. The implementation of the algorithm is to consistently clarify the assignments of performers to work. This makes it possible to determine the minimum costs for the implementation of the rescue plan within a given time frame (if such a solution exists), as well as to estimate the minimum time for carrying out emergency rescue operations for a given set of possible performers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call