Abstract

The article presents an overview of works on the experimental and computational study of the processes of heat removal from heated surfaces using a water-air mixture. A sharp increase in the heat transfer coefficient is shown even when adding water with a mass content of 0.1 % to the air flow. The factors that determine the efficiency of the heat exchange process are listed: the shape of the water spray jet, the distance from the outlet point of the water-air flow to the heat exchange surface, the characteristics of the heat exchange surface, the method of jet formation, the size of droplets and the location of the outlet points of the gas-droplet flow. The weak applicability of the data available in the literature is shown for calculating the cooling of finned tubes of industrial heat exchangers using a water-air mixture. It is substantiated that in order to establish the most optimal cooling modes for each for a separate heat exchange surface, it is necessary to conduct experimental studies, due to the complexity of heat transfer processes and the presence of a large number of influencing factors. It is shown that the finned tubes of heat exchangers of the passive heat removal system of WWER-1200 have a number of important features that affect the efficiency of their cooling using a water-air mixture. An experimental setup has been developed and a technique has been proposed for performing experiments to study these processes as applied to heat exchangers of a passive WWER safety system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.