Abstract
노후화된 아파트의 재고가 폭발적으로 증가하게 될 것으로 예상됨에 따라 콘크리트 시설물의 내구성을 향상시키기 위한 유지관리의 중요성이 증대되고 있다. 콘크리트 압축강도는 콘크리트 시설물의 내구성을 나타내는 대표적인 지표로, 시설물 유지관리를 위한 정밀 안전 진단에 있어서 중요한 항목이다. 그러나 콘크리트 압축강도를 측정하고 유지관리를 판단하는데 있어서 기존의 방법들은 시설물의 안전 문제, 고비용 문제, 낮은 신뢰성 문제 등의 한계점을 가진다. 기존의 콘크리트 시설물의 압축강도 진단 방법을 대체할 수 있는 방안으로, 본 연구는 심층 컨볼루션 신경망 기법을 활용하여 영상을 통해 콘크리트 압축강도를 예측할 수 있는 모델을 제안하였다. 또한 실험실 환경에서 콘크리트 시편 제작을 통해 구축한 콘크리트 압축강도 데이터셋을 적용하여 학습, 검증 및 테스트를 진행하였다. 그 결과 콘크리트 표면 영상으로 콘크리트 압축강도를 학습할 수 있음을 알 수 있었고, 본 연구에서 제안하는 모델의 유효성을 확인하였다.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Korean Journal of Construction Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.