Abstract

비행체의 궤적 최적화를 위해서는 비행체의 특성을 반영한 3차원 운동방정식이 유도되어야 하며, 비행선과 같이 공기보다 가벼운 비행체의 경우는 일반 고정익 항공기와는 다른 특성들을 반영하여야 한다. 본 연구에서는 중고도 무인비행선의 궤적 최적화를 위해 비행선의 운동방정식을 유도하고, 이를 이용한 최소시간 문제를 다루었다. 최적 궤적을 얻기 위하여 최적 궤적 문제를 제어입력 파라미터화를 이용한 비선형 프로그래밍 문제로 변환한 후 연속 2차 계획법을 이용하여 궤적을 산출하였으며, 이에 대한 수치결과를 나타내었다. In general, 3-dimensional point-mass equation has been widely used for the trajectory optimization of the fixed-wing aircraft and reentry vehicle. But it should be modified and represent target vehicle's own characteristics. For a lighter-than-air vehicle such as an airship, there exists different and peculiar flight characteristics compared with the aircraft. The first part of this paper is to derive the dynamic equation of motion for the mid-altitude unmanned airship and the second part is to obtain the optimal trajectories under the minimal time flight given constraints. The trajectory optimization problem is converted into the nonlinear programming problem using Sequential Quadratic Programming approach. Finally numerical solutions are presented in the last part of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.