Abstract

Each experimental design department has experience in determining design and operational loads for a given type of aircraft. The reliability of the data on the loading of a particular structural element determines the success of the aircraft being created. This is often confidential information. Much work has been investigated to improve the fatigue life of wing structural elements. With the development of integrated design methods, aircraft structure design can be performed in the shortest time, and with high technical excellence. In most cases, the fatigue life of wing elements is determined from the nominal stresses in the element. For a longitudinal structure set, it is customary to perform fatigue calculations directly using normal stresses in the element. For a more detailed specification of the fatigue life, it is necessary to have a general and local stress-strain state of a given structure. A feature of the work is to analyze the spectrum of loads acting on the wing console during a typical flight. The influence of high-lift devises (slats, flaps) on the shear forces and torque moment of the wing was analyzed. It has been shown that with the extensions high-lift devices, there is a significant increase in torque. These articles will make it possible to obtain the stress distribution of the detachable part of the wing under all operating modes. This, in turn, leads to a more thorough prediction of fatigue life. Since some operating loads can significantly change the distribution of the stress-strain state in the design element, and in turn change the fatigue life. The structural elements of the wing, in particular the attachment points for the high-lift devices, operate in a complex-stressed state. This complicates the process of predicting the fatigue life of these elements. To obtain a competitive aircraft, it is necessary to develop new methods of wing design with widespread use of integrated systems. This will contribute to obtaining a more optimal and perfect wing design

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call