Abstract

본 논문에서는 복잡하고 비선형적인 시스템을 위하여 최적 면역 알고리즘의 개선된 클론선택에 기반을 둔 최적FNN 설계방법을 제안한다. FNN은 퍼지추론의 간략 추론과 학습방법으로는 오류역전파 알고리즘을 하였고 멤버쉽함수의 파라미터, 학습률 및 모멘텀 계수들을 선정하기 위하여 개선된 클론 선택을 사용하는 방법을 도입하였다. 제안한 알고리즘은 생체의 면역반응에 기초를 둔 면역알고리즘의 클론선택을 기본으로 분화율을 조절하여 성능을 개선하였다. 그 과정을 통하여 다양한 항체들을 생성하고 목적함수나 제한조건과 같은 항원들에 대하여 가장 높은 친화도를 가지는 항체를 최적 항체로 선택하였다. 제안된 알고리즘의 성능을 평가하기 위하여 가스로공정과 교통경로선택 공정을 사용한다. In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.