Abstract

The displacement Deep-V catamaran concept was developed in Newcastle University(UNEW) through development of the systematic Deep-V catamaran series. One of the most important Deep-V catamaran launched to date is Newcastle University's own multi-purpose research vessel, The Princess Royal. The vessel was launched in 2011 and enhanced the Deep-V catamaran concept further with the successful adoption of a novel anti-slamming bulbous bow and tunnel stern for improved efficiency. It was however identified that the vessel has substantial amount of dynamic trim that limited the visibility of the captain. The dynamic trim also increased the wave-making resistance thereby preventing the vessel from attaining its maximum speed in certain sea states. This paper therefore presents the application of devices such as Trim Tabs, Interceptors, Transom Wedges and Integrated Transom Wedges-Tabs to control the dynamic trim and improvement of fuel efficiency of the vessel. All of these energy saving devices were fitted into a model for tests in Newcastle University's Towing Tank. Model test verification confirmed that the optimum appendage was the interceptors, they produced a 5% power saving and 1.2 degree trim reduction at 15 knots, and investigations of full scale trials will be scheduled with and without application of device to compare the improvement of performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.