Abstract

Mobile robotic systems are employed to perform a wide range of transportation and technological tasks. One of the main requirements to these systems is their high capability to traverse complex terrains and surfaces. Future applications of wheel-walking mobile systems largely define the problem of their energy efficiency. This paper presents a mobile robotic system with wheel-walking propulsion that can increase the system’s traverse capability on support surfaces with low bearing properties due to a new chassis layout and algorithms controlling the walking module. A cyclogram of the energy efficient step of the mobile robotic system with wheel-walking propulsion is developed, which provides high indicators of traverse capability on support bases with low bearing capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.