Abstract
Diffuse interface models are widely used to describe the evolution of multi-phase systems of various natures. Dispersed inclusions described by these models are usually three-dimensional (3D) objects characterized by phase field distribution. When employed to describe elastic fracture evolution, the dispersed phase elements are effectively two-dimensional (2D) objects. An example of the model with effectively one-dimensional (1D) dispersed inclusions is a phase field model for electric breakdown in solids. Any diffuse interface field model is defined by an appropriate free energy functional, which depends on a phase field and its derivatives. In this work we show that codimension of the dispersed inclusions significantly restricts the functional dependency of the free energy on the derivatives of the problem state variables. It is shown that to describe codimension 2 diffuse objects, the free energy of the model necessarily depends on higher order derivatives of the phase field or needs an additional smoothness of the solution, i.e., its first derivatives should be integrable with a power greater than two. Numerical experiments are presented to support our theoretical discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.