Abstract
본 논문에서는 저속으로 회전하는 유도 전동기의 베어링 결함을 검출하기 위해 음향 방출 신호와 히스토그램 모델링을 이용하는 방법을 제안한다. 제안한 방법은 정규화된 결함 신호가 구성하는 히스토그램의 포락선을 모델링하여, 부분 상관 계수와 DET(Distance Evaluation Technique) 기법을 이용하여 결함 유형별 고유한 특징을 추출 및 선택한다. 추출된 특징을 SVR(Support Vector Regression) 분류기의 입력으로 사용하여 베어링의 내륜, 외륜 및 롤러 결함을 분류한다. 최적의 분류 성능을 위해 SVR 커널함수의 매개변수를 0.01에서 1.0까지 변화시키고, 특징 개수는 2에서 150까지 변화시키면서 실험한 결과, 0.64-0.65의 매개변수와 75개의 특징 개수에서 제안한 방법은 약 91%의 분류 성능을 보였고, 또한 기존의 결함 분류 알고리즘보다 높은 분류 성능을 보였다. This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korea Society of Computer and Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.