Abstract

Oil is the most valuable hydrocarbon resource, but every year the labor intensity and economic expenses for oil production increase. This is related to the fact that most oil fields are classified as hard-to-recover reserves, that is why oil companies turn to studying and implementing the methods increasing oil production. To increase well productivity, there are often used mechanical, chemical, thermal and physical methods, as well as a combination of the above methods. Choosing a method firstly depends on the geological conditions of the deposit and the physicochemical properties of the extracted fluid. But application of the methods of increased oil production does not always lead to 
 a significant increase of the well flow rate. One of the promising, but insufficiently studied methods of increasing oil production is the microbiological impact on the oil formation. The method is based on the ability of bacteria to destroy the reservoir rock, increase porosity and cavernosity, create more channels and increase the filtration area in productive horizons. There is given analysis of the influence of silicate bacteria on the core from the Filanovsky oilfield. This bacterial strain has been chosen because the field rock is to a great extent composed of silicate and aluminosilicate minerals. A significant factor is that silicate bacteria are aerobian, i. e. they do not need free oxygen to maintain vital activity; as a result, they are rather viable in poor conditions. A flow chart is given and the conditions necessary for the introduction of microbiological flooding technology are indicated. There are presented the results of the experiment on using the method of microbiological flooding at the Filanovsky oilfield, changes in the structure of core particles have been revealed indicating active interaction of bacteria with oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.