Abstract

The article discusses the proposed algorithm and method for determining the optimal grinding conditions for linear bearing guides of low rigidity, which ensure meeting the specified requirements for the quality of the processed surface (surface roughness parameter Ra, no grinding burns and surface flatness tolerance) at maximum process productivity. Input factors (grinding wheel hardness, radial feed, table feed speed) are parameters for optimizing the grinding process. Mathematical models of the output factors are designed to limit the range of acceptable values of the optimization parameters. Processing performance was chosen as the target function. Optimization of parameters within the range of permissible values is carried out on the basis of ensuring the maximum productivity of the process. The required flatness tolerance is provided at the second stage of mode optimization by limiting the value of the maximum elastic deformation. The cutting forces, the magnetic field attraction of the machine table and the bending stiffness of the workpiece are the variable parameters. Mathematical models for determination of maximum elastic deformation of prismatic workpieces when fixing and machining are presented. The conditions for ensuring a given workpiece surface flatness tolerance are determined, taking into account the elastic deformation of a prismatic workpiece of low rigidity under the effects of the magnetic field of the machine tool and the radial component of the grinding force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call