Abstract

The original concept of the boiling water reactor core with the reduced moderation of neutrons is proposed, in which a negative void reactivity effect is provided not by increase leakage of neutrons in the axial direction, but by an another physical principle. Instead of the traditional core flattening, a special heterogeneous arrangement is proposed, in which, along with tight lattice fuel assemblies (fuel rod diameter is 13.5 mm, the distance between the fuel rods is 1.3 mm) containing uranium-plutonium (MOX) fuel, there are fuel assemblies with uranium-thorium fuel (UO2+ThO2) with a small (~1 %) initial content of 233U or 235U and an increased water-fuel ratio (fuel rod diameter is 12.6 mm, the distance between the fuel rods is 2.2 mm). Uranium-thorium assemblies provide a negative component of the reactivity effect during dehydration of the core. The results of the calculation of the reactor with a capacity of 3000 MW (t) showed the possibility of achieving a breeding ratio of fuel within 0.96-1.0 with a negative void reactivity effect (-0.2 %). The main advantages of the proposed concept are a directcircuit scheme, medium technological parameters close to traditional boiling reactors, allowing the use of available construction materials and equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.