Abstract

One of the most demanded directions of oceanographic problems is the study of long-term variability and modeling of future climatic changes and also the possibility of obtaining continuous information on the thermohaline structure of the sea based on the joint use of remote sensing data and the results of assimilation modeling. In current paper, research, of the Sea of Azov for the period 1913–2018 was carried out. We used the data of contact measurements from the oceanographic data base of the SSC RAS, Atlas of climate change in large marine ecosystems of the Northern Hemisphere, as well as data from the oceanographic data bank of the Marine Hydrophysical Institute RAS. Based on the analysis of the information, the calculation of the average monthly temperature and salinity was carried out, the periods of anomalous temperature were revealed, the periods of salinization and desalination of the Azov Sea also were noted. Data analysis made possibility to identify intrasecular climate fluctuations. Abnormally cold water temperature in winter was noted in the periods: 1926–1932, 1951– 1956, 2003–2012. In turn, the abnormally warm water temperature in winter, which was recorded in the periods: 1935–1939, 1958–1972, 1983–1992. by accompanied a cold spring-summer period. During the last five years the spring-summer period is characterized by an increased water temperature of the Azov Sea. The long-term variability of the salinity of the Sea of Azov significantly depends on the inflow of saltier waters of the Black Sea and river runoff. Due to these circumstances, the Sea of Azov is characterized by periods of salinization and desalination: the period of salinization was recorded from 1955 to 1973, a shorter period of desalination falls on 2003–2018. On average, the value of the ratio between the mean monthly salinity values during these periods is 2,2 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.