Abstract

One of the conditions for the safe operation of a nuclear power plant (NPP) unit is a comprehensive design and experimental justification of its failure-free operation in all operating modes and limitation of accident radiation consequences, including those in the case of severe beyond design basis accidents. According to the nuclear power industry development plans in Russia, new NPPs equipped with RBMK-1000 reactors are not supposed to be constructed in the future. Although the assigned service life of RBMK-1000 based power units that remain in operation is close to expiration, these power units account for most of the electricity generation in the total amount of nuclear power capacities in Russia (about 40%); therefore, the relevant industry organizations have decided to extend their operation. This article analyzes the severe accident evolvement scenario at an RBMK-based NPP during the stage of severe core damage, in the course of which fuel-containing masses collapse into the subreactor space filled with water. Once fuel-containing masses emerge in the sub-reactor room, they come in interaction with the reactor base concrete. There is a potential danger of the concrete floor slab melting and the corium collapsing into the bubbler pool water. The main strategy foreseen for keeping the molten core within the reactor space boundaries involves decay heat removal from the reactor and cooling of the support metal structures by supplying water. However, the filling of the subreactor space with liquid may give rise to conditions under which vapor explosion can occur. The maximum dynamic impact applied to the RBMK-1000 subreactor room walls in the event of possible interaction between the molten corium and water during a severe beyond design basis accident is estimated. It is shown that when the corium melt interacts with a large amount of water in the subreactor room, the kinetic energy of the resulting water vapor is sufficient to cause significant destruction of the power unit building. When the water level in the subreactor room falls below one meter, the destruction hazard becomes less probable. The mass of hydrogen released as a result of the interaction is also estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call