Abstract

In this work, the conditions for optimizing an optical recording material based on photosensitive acrylate-urethane nanocomposites with silicon oxide nanoparticles, for efficient Bragg gratings recording by multibeam interference method is presented. It was shown that the choice of the most effective monomers and their concentrations in the nanocomposite which depends on their structure and polymerization rate, followed by determination of the optimal recording radiation intensity for the given composition, makes it possible to adjust the conditions for component diffusion and redistribution, and hence, the formation of regions with different refractive indices in the recording medium. These results can be useful for creating complex 2D and 3D photonic structures based on the targeted modification of photosensitive polymer nanocomposites with different properties (luminescent, nonlinear optical, etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.