Abstract

The paper focuses on experiments carried out to determine the effect of a small-diameter channel, passed by a shaped-charge jet before interacting with an obstacle, on its penetrating action. These experiments were conducted in relation to the study of the features of shaped-charge jet motion through the cavity of an elongated solenoid with electromagnetic stabilization of the jet stretching process. For this purpose, steel sleeves with a channel were installed in front of the shaped charge, which made it possible to simulate the mechanical factors affecting the shaped-charge jet when it moves in the air channel. For the conditions implemented in the experiments, it was found that in the absence of collisions of the shaped-charge jet with the channel walls, the penetration depth decreases insignificantly, i.e. within 5%. In experiments in which there were traces of contact interaction with the shaped-charge jet on the channel surface, a significant decrease in the penetrating action was recorded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call