Abstract
The article considers the application of the integrated method for solving linear differential equations. An important prerequisite for using this approach is the possibility of reducing different types of ordinary differential equations to equivalent Volterra integral equations, while the inverse transformation is not always possible. The advantages of integral equations in the computational plan are determined by the smoothing properties of the integral operators, which is manifested in the increased accuracy of the obtained solutions or in the reduced number of computational operations in the process of their solution. In addition, integral equations allow solving problems were given or required functions have breaks of the first kind. From a more general point of view, when solving differential equations, increasing the error of the right part entails a rapid increase in the errors of the results together with increasing the rate of their accumulation, and the smoothing properties of the integrated method, due to the stability of direct methods. conditions of errors in the right part of the differential equation. The positive properties and efficiency of the integrated approach for solving linear differential equations are considered based on computational experiments, which allow to practically prove the expediency of using integrated methods of description and analysis of applied problems
Highlights
The article considers the application of the integrated method for solving linear differential equations
An important prerequisite for using this approach is the possibility of reducing different types of ordinary differential equations to equivalent Volterra integral equations
always possible. The advantages of integral equations in the computational plan are determined by the smoothing properties of the integral operators
Summary
При розв’язанні багатьох задач дослідження динамічних систем перехід від диференціальних рівнянь до інтегральних дозволяє використовувати ряд переваг інтегрального представлення задачі, Математичне та комп’ютерне моделювання таких як повний математичний опис, згладжуючі властивості інтегральних операторів; вивчення, забезпечення і прискорення збіжності ітераційних методів; висока стійкість прямих методів [1,2,3,4,5]. Задача Коші для диференціального рівняння із змінними коефіцієнтами d n y x Має еквівалентне представлення у вигляді інтегрального рівняння [4]: x u x K x, s u s ds x , (2)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical and computer modelling. Series: Physical and mathematical sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.