Abstract

In this paper, we propose an algorithm for achieving robust Visual Voice Activity Detection (VVAD) for enhanced speech recognition. In conventional VVAD algorithms, the motion of lip region is found by applying an optical flow or Chaos inspired measures for detecting visual speech frames. The optical flow-based VVAD is difficult to be adopted to driving scenarios due to its computational complexity. While invariant to illumination changes, Chaos theory based VVAD method is sensitive to motion translations caused by driver`s head movements. The proposed Local Variance Histogram (LVH) is robust to the pixel intensity changes from both illumination change and translation change. Hence, for improved performance in environmental changes, we adopt the novel threshold estimation using total variance change. In the experimental results, the proposed VVAD algorithm achieves robustness in various driving situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.