Abstract

Due to the development of technology related to a weapon system and the info-communication, the battle system of a warship has to manage many kinds of human intervention tactics according to the complicated battlefield environment. Therefore, many kinds of studies about M&S(Modeling & Simulation) have been carried out recently. The previous M&S system based on an agent, however, has simply used non-flexible(or fixed) tactics. In this paper, we propose an agent modeling methodology which has reinforcement learning function for spontaneous(active) reaction and generation evolution learning Function using Genetic Algorithm for more proper reaction for warship battle. We experiment with virtual 1:1 warship combat simulation on the west sea so as to test validity of our proposed methodology. We consequently show the possibility of both reinforcement and evolution learning in a warship battle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.