Abstract

In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.