Abstract

The electron temperature and the concentration of charged particles associated with it in a gas-discharge plasma can lead to a change in the properties of the corresponding electronic devices: a change in the space charge. Even an insignificant space charge, due to the difference in the concentrations of charged particles in the plasma, can cause instabilities and lead to the formation of undamped longitudinal and transverse waves (strata) in the plasma of the positive gas discharge column. In a magnetized gas-discharge plasma, the space charge decreases due to a decrease in the parameters of motion of charged particles, and with a transverse magnetic field B = B0 = (bebp)-1/2 vanishes and the plasma becomes homogeneous. In the case when the magnetic weakly affects the plasma, it is necessary that the concentration of charge carriers be the same, i.e. the plasma is homogeneous. Therefore, it is necessary to determine the minimum value of the electron temperature at which the Maxwellian plasma is homogeneous. Goal – To estimate the effect of electron temperature on the distribution of charge carrier concentration, analyze the electron balance equation in two cases: at zero and real boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call