Abstract

The experimental verification of the calculated flash point temperatures of solvent mixtures used in industry is presented, and the evaluation of the adequacy of the methods for calculating the rate of its evaporation is given. To verify these methods, acetone-benzene and acetone-chloroform mixtures were experimentally studied, for which a deviation from Raoult's law could be assumed. The dependences of the evaporated substance on time at room temperature are obtained. An increase in the saturated vapor pressure and an increase in the evaporation rate are observed in the first mixture, and a decrease in the second. In the first case, the amount of substance that is taking part in the explosion increases and must be taken into account when calculating the room pressure increase during explosion, and the second can be used to reduce the potential explosive hazard of solvent mixtures. The problem of predicting fire and explosion hazard of solvents is associated with the identification of the fact of the formation of explosive concentrations of their vapors and change of flash point temperatures of the mixed liquids. By the example of a number of binary mixtures of flammable liquids, the influence of the interaction of their components on the flash point is shown, the calculated and experimental (reference) data in a closed crucible are compared for the ratio of components in the range from 0 to 100 % in benzene-toluene and benzene-ethanol mixtures. It is noted that for mixtures with a similar molecular structure, the results of calculating the flash point are in good agreement with the experiment, otherwise, the calculation gives overestimated values for liquids of various classes. Therefore, for mixtures of solvents used in industry, the number of components of which is three or more, it is required to check the flash point experimentally in order to more accurately predict their fire and explosion hazard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.