Abstract

The findings of this study confirmed the alteration of β-glucosidase activity, nutritional constituents, isoflavones, antioxidant activities, and digestive enzyme inhibition activities in soybeans during solid-state fermentation times with mycelia of Tricholoma matsutake. After nine days, the highest activity level was observed for β-glucosidase (3.90 to 38.89 unit/g) and aglycones (163.03 to 1,074.28 μg/g). The sum of isoflavones showed a significant decrease (3,489.41 to 1,325.66 μg/g) along with glycosides (2,753.87 to 212.43 μg/g) for fermentation, while fatty acids showed a slight increase and amino acids showed a marked increase. Total phenolic and flavonoid contents showed a corresponding increase according to fermentation times (5.58 to 15.09 GAE mg/g; 0.36 to 1.58 RE mg/g). Antioxidant and enzyme inhibition activities also increased; in particular, the highest level of scavenging activities was observed for ABTS (up 60.13 to 82.08%), followed by DPPH (up 63.92% to 71.98%) and hydroxyl (up 36.01 to 52.02%) radicals. Of particular interest, α-glucosidase (6.69 to 83.49%) and pancreatic lipase inhibition (1.22 to 77.43%) showed a marked increase. These results demonstrated that fermentation of soybeans with the mycelia of T. matsutake enhanced the nutritional and functional constituents, and the biological activities of soybeans. Thus, this fermentation technology can be used to produce a novel functional materials from soybeans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call