Abstract

Research subject . High-magnesium rocks associated with the granitoid massifs of the Urals are represented by gabbro-diorites and their melanocratic varieties (hornblendites), as well as by diorites and quartz diorites. These rocks are composed of amphibole porphyrocrists frequently combined with clinopyroxene and phlogopite immersed in a basis of acid plagioclase with interstitial quartz and potassium feldspar. In addition to a high magnesium content of 0.5–0.8 units, these rocks are characterized by extremely high chromium contents of up to 1200 ppm. Methods . The study of the composition of high-magnesium rocks was performed using an ELAN 9000 inductively coupled plasma mass spectrometer, an SX-100 Cameca electron probe microanalyzer and an energy dispersive device INCAEnergy 450 X-Max 80. The detection limit for Cr 2 O 3 was equal to 0.05 wt. % and 0.2 wt. % for the microanalyzer and the energy dispersive device, respectively. Results . The two main mineral associations related to magmatic and post-magmatic processes are found to be different in terms of chromium behaviour. The average concentrations of chromium oxide in the minerals from the magmatic association varied within the range (wt. %) of 0.10–0.50, 0.29–0.68, 0.08-0.36 and 0.0–1.6 for different samples of clinopyroxene, amphibole, phlogopite and their variations, respectively. The post-magnetic association included minerals representing the products of postmagmatic (hydrothermal) transformation of pyroxenes and alumina amphibole into low-alumina magnesia hornblende, actinolite, titanite, epidote and muscovite. The transformation of chromospinelide at this stage had been accompanied by exchange processes with silicates, as a result of which the silicates were enriched with chromium. The average concentrations of chromium oxide in the minerals of this association were (wt. %) 0.24–0.80, 1.38–3.08, 1.03 and 3.5 in the samples of amphibole, epidote, titanite and muscovite, respectively. Conclusion . It is assumed that the crystallization of the early association of iron-magnesium silicates proceeded from aqueous high-magnesium melts. The subsequent post-magmatic change of such silicates led to the development of phases with a similar and occasionally higher chromium content. This fact can be explained by the interaction of silicates with chromite under the conditions of low fluid oxidation, which was insufficient for the formation of magnetite.

Highlights

  • High-magnesia rocks associated with the granitoid massifs of the Urals are represented by gabbro-diorites and their melanocratic varieties, diorites, quartz diorites

  • Methods.The study of the composition of high-magnesian rocks was performed on an ELAN 9000 inductively coupled plasma mass spectrometer, an SX-100 Cameca electron probe microanalyzer, and an energy dispersive device INCAEnergy 450 X-Max 80

  • Chromium in high-Mg rocks associated with granitoid massifs of the Urals associations for different samples are, wt %: 0.10–0.50 in clinopyroxene, 0.29–0.68 in amphibole, 0.08–0.36 in phlogopite with variations from 0.0 to 1.6

Read more

Summary

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ

На Урале высокомагнезиальные диоритоиды обнаружены в составе гранитоидных массивов, входящих в состав Главной гранитной оси Урала. На Среднем Урале они встречены в гранодиоритгранитных плутонах западной части ВосточноУральской зоны В составе Верхисетского батолита эти породы выявлены в поле гранодиоритов Северского плутона с возрастом 315–306 млн лет [Смирнов и др., 2014; Зинькова и др., 2017], где представлены флогопитовыми горнблендитами, габбродиоритами, Прибавкин и др. Б – схема геологического строения Челябинского батолита [Каллистов, 2011]. 1 – quartz diorites, Western Verkhisetsk complex tonalites (D2–3); 2 – granodiorites, Verkhisetsk complex granites (C2–3); 3 – Ayat’ complex granites (C3); 4 – Baltym complex gabbro (D); 5 – ophiolitic rocks (O–S). На Южном Урале они установлены среди гранодиоритов ранней серии Челябинского батолита Слагаемая ими синплутоническая дайка габбродиоритового состава мощностью 3–4 м не имеет закаленных контактов и разделена по простиранию на отдельные фрагменты округлой и неправильной формы, что доказывает ее синплутоническую природу [Каллистов, Осипова, 2017]. Вмещающих дайку, составляет 361 ± 4 млн лет [Каллистов, 2014]

МЕТОДЫ ИССЛЕДОВАНИЯ
ПЕТРОГРАФИЧЕСКИЕ ОСОБЕННОСТИ И ХИМИЧЕСКИЙ СОСТАВ ПОРОД
РАСПРЕДЕЛЕНИЕ ХРОМА В МИНЕРАЛАХ
Хром в минералах магматической ассоциации
Хром в минералах постмагматической ассоциации
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Si AlIV AlVI Ti Cr Fe Mn Mg Ca Na K
MgO NiO
Si Al Ti Cr Fe Mg Mn Ca Sr Na K
Расчет формульных коэффициентов
Findings
СПИСОК ЛИТЕРАТУРЫ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call