Abstract

The main objective of this study is to investigate the variation in the ignition characteristics of coals as a function of moisture content in a laminar flow reactor (LFR) equipped with a fuel moisture micro-supplier designed by the Pusan Clean Coal Center. The volatile ignition position and time were observed experimentally when a pulverized coal with moisture was fed into the LFR under burning conditions similar to those at the exit of the pulverizer and real boiler. The reaction-zone temperature along the centerline of the reactor was measured with a , R-type thermocouple. For different moisture contents, the volatile ignition position was determined based on an average of 15 to 20 images captured by a CCD camera using a proprietary image-processing technique. The reaction zone decreased proportionally as a function of the moisture content. As the moisture content increased, the volatile ignition positions were 2.92, 3.36, 3.96, and 4.65 mm corresponding to ignition times of 1.46, 1.68, 2.00, and 2.33 ms, respectively. These results indicate that the ignition position and time increased exponentially. We also calculated the ignition-delay time derived from the adiabatic thermal explosion. It showed a trend that was similar to that of the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.