Abstract

Fabrication of a durable and strong nanopatterned mold insert using metal sheet and plate is important for molding of thermoplastic materials. Conventionally, the nickel stamper replicating a master pattern by electroforming process has been used for injection molding of nanotextured products such as Blu-ray media. However, a more facile and cheaper mold fabrication process is highly required for manufacturing of functional products based on nanostructured surface. In this study, zirconia nanoparticles were blended with UV curing polymer to fabricate a polymer nanocompositebased nanopattern mold. Compared to the cured pure Ormostamp, the modulus of elasticity of the nanocomposite filled with approximately 54 vol% of zirconia nanoparticles increased by 160 times. Additionally, the modulus of elasticity reached 197 ㎬ by thermal decomposition of the UV-Cured polymer and post-annealing at 800°C of the nanoparticle layer. The nanopatterns were formed on stainless steel sheet and block, and applied to hot embossing of the PMMA films and injection molding of the COC materials, respectively. No deterioration of the mold occurred during the hot embossing 30 times and the injection molding 600 shots. Nanoparticle-enhanced UV curing nanocomposites or post-heat treatment methods are cost-efficient and easy, because many molds can be manufactured from one master pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call