Abstract

The rings torsion theory that is based on the assumption about flat rigid cross-section was suggested by the authors in the previous papers. The analytical expressions of torsional stiffness have been derived for different kind of loads: pure moment, shear force and surface pressure. In the present paper the analytical model of flange with attached cylindrical shell deforming under internal pressure is suggested. The mechanical system is split into two parts (flange and shell) with the help of imaginary section method. An unknown shear force and bending moments are applied to both parts according to this method. Therefore flange is loaded under internal pressure, shear force and bending moments. As mentioned above, for all these loads the angle of flange cross-section rotation can be presented in analytical form based on the rings torsion theory. Full rotation angle is presented as a sum of these angles. The radial displacement of imaginary section was determined on the basis of the assumption about flat rigid cross-section. On another hand, the rotation angle and radial displacement of imaginary section are determined on the base of the cylindrical shell bending theory too. Two linear equations in the unknown shear force and bending moment were derived by equating corresponding expressions. In such а way the analytical model of flange with attached shell deforming was built. The comparison calculations by finite element methods confirmed the adequacy of proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.