Abstract
The paper deals with the analysis of available approximations to describe the dependence of heat capacity at constant volume on the temperature of a molecular crystal. The information on the dependence of heat capacity at constant volume on the molecular crystal’s temperature plays an important role in construction of molecular crystal state equations. Molecular crystals are closing relations of mathematical models, which describe shock wave propagation, initiation of detonation in molecular crystals, etc. It is shown that the examined in the paper Debye and Einstein approximations, widely used for description of thermodynamic properties of monoatomic crystals, do not enable us to sufficiently describe the dependence of heat capacity at constant volume on the temperature of molecular crystals of nitro compounds. The suggestion by A.I. Kitaygorosky to divide crystal vibration frequency into intramolecular and vibration of a molecule as a whole (three vibrations of the molecule’s center of gravity and three vibrations of Euler angles), well-proven when calculating thermodynamic functions of a number of organic molecular crystals with planar molecules, doesn’t make it possible to adequately describe the dependence of heat capacity at constant volume on the temperature of molecular crystals of nitro compounds. The obtained in this work results highlight the necessity for development of special approximations, which provide an opportunity to adequately describe both low-frequency and high-frequency parts of a vibration spectrum of molecular crystals of nitro compounds, the dependence of heat capacity at constant volume on the crystal’s temperature and the Gruneisen function, which is a link between heat and cold components of the molecular crystal state equation.
Highlights
Определение тепловой составляющей уравнений состояния молекулярных кристалловДля определения тепловой составляющей уравнений состояния молекулярных кристаллов могут быть использованы приближения Дебая или Эйнштейна
Ключевые слова: уравнение состояния; молекулярный кристалл; энергия Гельмгольца; постоянная Планка; постоянная Больцмана; приближение Дебая; приближение Эйнштейна
It is shown that the examined in the paper Debye and Einstein approximations, widely used for description of thermodynamic properties of monoatomic crystals, do not enable us to sufficiently describe the dependence of heat capacity at constant volume on the temperature of molecular crystals of nitro compounds
Summary
Для определения тепловой составляющей уравнений состояния молекулярных кристаллов могут быть использованы приближения Дебая или Эйнштейна. Из потенциала Гельмгольца легко определяется теплоемкость при постоянном объеме. В силу того, что при температурах, при которых проводятся эксперименты, присутствует ангармонизм, то теплоемкости при постоянном объеме и постоянном давлении не совпадают. Что связь между теплоемкостями определяется следующим равенством. = T α2 V, βT здесь α – изобарический коэффициент объемного расширения; βT – изотермическая сжимаемость. Легко определить связь между теплоемкостями и сжимаемостями βS = CV , βT CP где βS – адиабатическая сжимаемость. В силу того, что адиабатическая сжимаемость связана с адиабатической скоростью звука CS соотношением вида. То легко определяется связь адиабатической сжимаемости и адиабатической скорости звука с известными из эксперимента термодинамическими параметрами [3, 4]. Приведенные выше соотношения позволяют определить выражение для теплоемкости при постоянном объеме, в которое входит теплоемкость при постоянном давлении, изобарический коэффициент объемного расширения, адиабатической скорость звука и температура
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics"
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.