Abstract
Работа посвящена исследованию динамического поведения упругих цилиндрических труб, имеющих поверхностный дефект и взаимодействующих с внутренним потоком сжимаемой жидкости. Дефект в виде кольца прямоугольного сечения располагается на внутренней или внешней поверхности упругого тела и характеризуется собственным набором физико-механических параметров. Поведение идеальной сжимаемой жидкости описывается согласно потенциальной теории, а труба рассматривается в рамках линейной теории упругости. Для определения гидродинамического давления, действующего со стороны жидкости на внутреннюю поверхность трубы (дефекта), используется уравнение Бернулли. Математическая постановка задачи динамики упругого тела выполнена с помощью вариационного принципа возможных перемещений, а система уравнений для жидкой среды формируется с использованием метода Бубнова - Галeркина. Численная реализация алгоритма осуществляется на основе полуаналитического варианта метода конечных элементов. Оценка устойчивости базируется на вычислении и анализе комплексных собственных значений связанной системы уравнений. Верификация модели произведена для случая идеальной трубы путeм сопоставления результатов с известными экспериментальными и численными данными. Для цилиндрической трубы, жeстко защемлeнной с обоих краeв, изучено влияние геометрических и физико-механических параметров дефекта на критическую скорость потока жидкости, при которой система теряет устойчивость. Показано, что наличие дефекта снижает границу гидроупругой устойчивости. Установлено, что размещение дефекта на внешней поверхности трубы оказывает большее влияние, чем его расположение на смоченной поверхности.
Highlights
This paper is concerned with the dynamic behavior of an elastic cylindrical pipe
with surface defects interacting with the internal flow of a compressible fluid
the behavior of the pipe is considered in the framework of the linear theory
Summary
Н. Сенин, Численное исследование влияния дефектов поверхности на устойчивость цилиндрической трубы с жидкостью, Вестн. Дефект в виде кольца прямоугольного сечения располагается на внутренней или внешней поверхности упругого тела и характеризуется собственным набором физико-механических параметров. Действующего со стороны жидкости на внутреннюю поверхность трубы (дефекта), используется уравнение Бернулли. Математическая постановка задачи динамики упругого тела выполнена с помощью вариационного принципа возможных перемещений, а система уравнений для жидкой среды формируется с использованием метода Бубнова—Галеркина. Жестко защемленной с обоих краев, изучено влияние геометрических и физико-механических параметров дефекта на критическую скорость потока жидкости, при которой система теряет устойчивость. Что наличие дефекта снижает границу гидроупругой устойчивости. Н. Численное исследование влияния дефектов поверхности на устойчивость цилиндрической трубы с жидкостью // Вестн.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.