Abstract

В рамках роботи було досліджено, що для розпізнання аварійнихситуацій потрібне зняття сигналів з джерел та подальша обробка керуючогосигналу. Тип датчика, як ключова роль в технологічній системі. Длярозпізнавання катастрофічних ситуацій можливе застосування датчиківвказаних типів. Стерео- й квадро- системи для зменшення перешкод та витримка умовдля акустичного центру. Рішення з приводу відсіювання частини перешкодпід час обробки сигналу: використання математичного апарату штучнихнейронних мереж та його подальше навчання під керівництвом верстатника. During the operation of the CNC machine there are serious problems and errors that lead to catastrophic failure of the cutting tool. We found that they occur for several reasons: errors in the initial adjustment of the CNC machine, low accuracy of the workpiece surfaces, errors in the configuration of the device, errors in control programs, failures in the CNC system and unfastening of workpieces during operation. As part of the work, it was investigated that the recognition of emergency situations requires the removal of signals from the cutting area and the subsequent generation of the control signal. The type of sensor plays a key role in such recognition systems. To detect catastrophic situations, it is possible to use acoustic sensors as the easiest to install in various CNC machines.The study of the capabilities of acoustic sensors and the subsequent processing of the received signal revealed significant shortcomings: low selectivity and noise immunity (vibration of the housing to which it is fixed; chip chips and noise of pouring coolant.Stereo and quad systems are offered to reduce interference signals by withstanding the conditions of the acoustic center. We have proposed a solution for the elimination of part of the interference during signal processing: the use of the mathematical apparatus of artificial neural networks and its further training under the guidance of a machine operator.The system has a ring signal recorder so that, if necessary, the machine operator activates the "Finish" functions for the neural network. This will help not to create the entire database of signals in the laboratory, but to complete the system of accident prevention directly in production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.