Abstract

기본적인 생성 요약 모델은 문서 내 모든 중요 내용을 포함하는 짧은 요약문을 생성하는 것을 목표로 한다. 반면, 질의(Query) 기반 생성 요약 모델의 경우 문서 내에서 질의와 관련된 정보를 요약해야 한다. 기존의 질의 기반 요약 모델은 문서 내 단어들과 질의문 간의 어텐션(Attention) 메커니즘을 통해 단어의 가중치를 계산하고 이를 기반으로 문장의 중요도를 계산한다. 이러한 방식은 문서의 전체적인 문맥정보를 반영하기 어렵다는 단점이 있다. 본 논문에서는 이러한 문제를 문장 랭킹 스코어와 문장 단위 그래프 구조를 만들어 문장의 중요도뿐만 아니라 문맥 정보를 반영하여 생성 요약의 성능을 향상시킬 수 있는 새로운 생성 요약 기법을 제안한다. 실험으로 살펴본 최종 제안 모델의 성능은 같은 데이터를 사용하는 선행 모델 대비 ROUGE-1 1.44%p, ROUGE-L 0.52%p의 향상된 성능을 보인다.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.