Abstract

Problem of developing methods for protecting buildings and structures from the vibrations transmitted to them from the soil under the action of seismic effects is extremely important to date. One of these modern methods is seismic pads. The purpose of this work was to study the effectiveness of adding a pad of granu-lar metamaterials under the foundation of the building to decrease influence of seismic shear waves. The Finite Element Analysis of Mohr-Coulomb models was used to achieve this goal. The FE model consists of a ten-story superstructure rested on the slab foundation, under which there is a layer of granular metamateri-als. The values of five variables that affect the mechanical properties of these metamaterials were analyzed (density – cohesion – internal friction angle – Young's modulus – Poisson's ratio) for two different pad thicknesses. The dynamic analysis performed using the software package Abaqus/CAE showed the effec-tiveness of the granular metamaterials in their ability to significantly reduce magnitudes of displacements, velocities and accelerations in the building compared to the same values in the absence of these metamateri-als. The analysis also revealed that among the studied variables, the cohesion is the parameter most influenc-ing the effectiveness of metamaterials in their ability to dissipate seismic waves, while no significant effect was observed for the other parameters

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.