Abstract

В прямоугольной области рассматривается неоднородное уравнение смешанного параболо-гиперболического типа второго порядка. Для данного уравнения исследуется аналог задачи А. А. Дезина, который заключается в отыскании решения уравнения, удовлетворяющего внутренне-краевому условию, связывающему значение искомой функции на линии изменения типа уравнения со значением нормальной производной на границе в области гиперболичности, и неоднородным нелокальным краевым условиям периодичности. Приводится подстановка, позволяющая свести задачу к эквивалентной и, не теряя общности, ограничиться исследованием задачи с однородными условиями для неоднородного уравнения. Доказаны теоремы единственности и существования решения задачи, решение выписано в явном виде. Решение поставленной задачи ищется в виде суммы ряда Фурье по ортонормированной системе собственных функций соответствующей одномерной спектральной задачи. Установлен критерий единственности решения задачи. Для случая, когда нарушен критерий единственности, приведен пример нетривиального решения однородной задачи и получено необходимое и достаточное условие существования решения неоднородной задачи. При обосновании существования решения возникает проблема малых знаменателей в сумме ряда относительно соотношения сторон прямоугольника в гиперболической части области. Получена оценка отделенности знаменателя от нуля при некоторых условиях относительно параметров задачи, которая при определенных условиях на заданные функции позволяет доказать абсолютную и равномерную сходимость как формально построенного решения, так и соответствующих производных, входящих в уравнение.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.